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M o n t e  C a r l o  C a l c u l a t i o n s  o f  A t o m s  and  M o l e c u l e s  

K. E. Schmidt I and J. W. Moskowitz  2 

The variational and Green's function Monte Carlo (GFMC) methods can treat 
many interesting atomic and molecular problems. These methods can give 
chemical accuracy for up to 10 or so electrons. The various implementations of 
the GFMC method, including the domain Green's function method and the 
short-time approximation, are discussed. Results are presented for several 
representative atoms and molecules. 
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1. I N T R O D U C T I O N  

We will explain briefly the variat ional  and Green's  function Monte  Carlo 
( G F M C )  methods  used by our  g roup  at New York University and give 
some representative results for a toms and molecules. The Hamil tonian  is 
that of the nonrelativistic Schr6dinger equat ion within the B o r n -  
Oppenheimer  approximat ion.  In a tomic units 

l ~ / V 2  ~ Zj 
H =  - ~  . .. I&,-e,I 

1 v~ + v(R) 
2 

1 

~,~j I f , -  61 

(1) 

where f / i s  the electron position, fu,  the fixed posit ion of the nucleus i, and 
Zi is the charge of the nucleus i. Hereafter, /~, /~', a n d / ~ "  etc. will express 
the 3N coordinates  of the N electrons. 

The variat ional  and G F M C  methods  can be used to calculate the 
expectation value of any ground-sta te  quantity.  We will give results for the 

1 Courant Institute of Mathematical Sciences, 251 Mercer St., New York, N.Y. 10012. 
2 Chemistry Department, New York University, New York, N.Y. 10003. 

1027 

0022-4715/86/0600-1027505.00/0 �9 1986 Plenum Pubfishing Corporation 
822/43/5-6-20 



1028 Schmidt and Moskowitz 

correlation energy, the excited state splitting, and potential surface. The 
GFMC calculations will be using the method often known as domain 
Green's function. (1'2'3) The variational method is used to get initial results 
and to generate starting Monte Carlo walkers for the G F M C  
calculations. (4) 

2. T H E  V A R I A T I O N A L  M E T H O D  

The variational method is given by calculating the expectation value of 
the Hamiltonian and noting that it is an upper bound to the exact ground- 
state energy Eo 

Eo < ]" dR ~*(R) H~T(R ) 

= ~ d/~ H~*(/~) ~ ( f i )  ~r(/~) 
J ~u.(/~) S d/~' ~*(/~') gtT(/~') (2) 

The second evaluation of the integral is easily calculated using the 
Metropolis et al. method (5) giving a low variance answer since 
H~*(R)/~*(R) will be nearly constant if 7*v(/~ ) is close to the true 
ground-state wave function. 

The integration can be implemented using a standard single-particle 
move Metropolis Monte Carlo method; however, it is convenient to 
calculate it using a slightly generalized multi-particle move method. This 
method utilizes a directed sampling (or force bias or smart Monte Carlo) 
method that has been discovered and described many times in the 
literature. (6) The a priori transition probability for a move of each particle 
within a box of side 6 from the position Ri = (xl i, x2i, ..., X3N i) to /~j is taken 
to be 

3 N  

Ti . j  = 1~ { 1 + sign[min(2~/&, IFz[ ), FlJ ( x / -  x/)/6 3 } 
l - - 1  

(3) 

with 0 ~< a ~< 1. This is just a linear approximation to the ratio of the wave 
functions at the new and old positions. The sign and the minimum 
functions are used to ensure that Ti~j is a valid probability density. The 
acceptance probability is 

A ~ j =  Min (I ,  Tj-~i~2(Rj)~ 
T,~j ~(~,) /  (4) 
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and a value of e ~ 0.8 is found to be nearly optimal. The virtue of this 
method is that the same routines can be used to calculate the wave function 
and its derivatives for both the variational and the G F M C  methods. For  
the small (N~< 10) systems we have studied, this multi-particle technique is 
nearly as efficient as the standard Metropolis method. 

The variational trial functions we take are usually of the form 

~T(R) = I-I f ( I F i -  ~1) ~(R) (5) 
i<j 

where the Jastrow function 

f ( r )  = exp ( al@br ) (6) 

with a and b variational parameters, gives the correct coulomb cusp con- 
dition and heals smoothly to a constant at large r. The model function 
qs(/~) is typically a Har t ree-Fock self-consistent field wave function or a 
very small (typically 2- to 10-configuration) configuration interaction wave 
function. All orbitals are taken to be a linear combination of Slater 
orbita]s. 

3. T H E  G F M C  M E T H O D  

The G F M C  method was first applied to a nontrivial atomic problem 
by Kalos. (7) Many improvements have been made since the initial 
calculation. (1'2"8) I will describe here our current G F M C  calculations. Two 
different forms for the G F M C  method are used, and these correspond to 
time-dependent and resolvent methods in standard many-body pertur- 
bation theory. The corresponding integral equations for the Schr6dinger 
equation are 

0(~ + At) = exp[ - ( g -  Er )  Ar] ~(~) (7) 

and 

~]n+I=FET-~ ECI ~n 
LH+E~J 

(8) 

with E c + Eo > 0. Both of these methods, when iterated many times, con- 
verge exponentially to the lowest state of H not orthogonal to the starting 
wave function. It is clear that any decreasing function of H could be used 
as a propagator  to converge to the ground state of H. E r  and E c  are con- 
stants. The value of ET is chosen to be a good approximation to the 
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ground state energy and the value of Ec is chosen so that the spectrum of 
H+Ec  is positive. Further adjustments in Ec affect the efficiency of the 
algorithm but not the result. 

In the present calculations the second or resolvent form of the Green's 
function is used. However, it is calculated from the equation 

H + E c -  dr e -(H+ ec)~ (9) 

The integration over r is done by Monte Carlo. After convergence it is easy 
to see that the sampled times v have a Poisson distribution with an average 
value of n/(Eo + Ec) after n steps. Ec controls the average time step. If Ec 
is large, the time step is small. 

The energy expectation value is calculated in two equivalent ways. The 
mixed energy is 

(10) 

It is convenient to operate H to the left in (10). If the initial wave function 
On=o is equal to the trial function ~ur(/~ ) then, by commuting H with 
1/(H + Ec) it is earily shown that 

E M __ S d.R ~/n/2(.~) HI//n/2(]~) (11 ) 
dK 0"/2(~q) 4'"/20q) 

Since this is a variational integral, EM is an upper bound to Eo for all n and 
as n--* 0% EM= Eo . 

The growth energy is obtained by looking at the change in the nor- 
malization of the wave function. As can be seen from (7) and (8), once 
has converged, the normalization will be unchanged during further 
iteration if Er is chosen to be Eo. The ratio of the input to output nor- 
malizations gives an energy equivalent to but with higher variance than the 
mixed energy. 

The Green's function is not known and must be calculated or sampled. 
This is accumplished by writing the following identity 

1 1 1 1 
H+Ec-Hu+E-------~+ Hu+E~c(Hu-H)  H + E c  (12) 

Equation 12 is proved by writing H u - H  as (Hu+Ec) - - (H+Ec)  and 
canceling terms. The Hamiltonian H u represents a set of solvable 
Hamiltonians. At each iteration of (12) a different Hamiltonian may be 
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used. 'The terms on the right-hand side of (12) are all analytically known 
functions when (12) is iterated. To sample the full Green's function 
1/(H + Ec), we sample the sum of terms indicated by the right-hand side of 
(12). A similar equation can be used for the time-dependent Green's 
function of (7). 

To make further progress, it is convenient to work in R space where 
the calculations are actually done. The R space Green's functions for the 
Hamiltonians H and Hu 

~ 1 

G(R. R')= <~1H--T-k-~ I~'> (13) 

1 
av(/#, R ' ) =  </#l - -  I/~'} (14) 

Hu + Ec 

satisfy the equations 

(H + Ec) G(R, R') = 6 ( R -  R') (15) 

(H~. + Ec) Gu(-R, if,') = 6 ( R -  _#') (16) 

A simple form for Hu is 

1 2 Hu= --~VR+ U (17) 

with U independent of R. It is convenient to enforce the boundary con- 
dition that Gv(R, R') goes to zero on the boundary of a domain. This 
domain is usually taken to be defined by allowing each particle to move in 
a sphere of a different but fixed radius about its current position. The use of 
a domain for Gv(R, R') often looks strange at first sight. However, it is 
also often used in another guise in lattice calculations. For example, a 
checkerboard breakup of the Hamiltonian can be viewed as a domain since 
it restricts the number of final states that can be reached by the propagator. 
It is then only necessary to have Hu be a good approximations to H within 
this restricted domain to have good convergence properties of (12). 

Equation 12 in R space becomes 

G(/~,/#') = Gu(/~, -#') - ;s dR " G(_#,/~'")[-~" VGu(/~",/~')] 

+ fvdR"G(-~,-#")[U-V(_R"I]Gu(R",R ') (18) 

The second and third terms on the right-hand side come about from the 
difference H u - H .  The second term is the difference in the kinetic energies 
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and becomes an integral over the surface of the domain of Gu. The - f i "  V 
operator is the gradient normal to the surface. The third term is the dif- 
ference in potential energy and is an integral over the volume of the 
domain of Gv. This equation represents the propagation of walkers by 
G(/~,/~'). The first term is propagation by Gu. In the second term, the 
walker propagates from /~' to /~" where it scatters off the surface of the 
domain and then propagates from/~" to /~  via the full Green's function. In 
the third term the walker scatters off the difference in the potential between 
H u and H. If U is chosen such that for all R" within the domain, 
U >  V(R"), all the terms on the right-hand side of (18) are positive and can 
be viewed as probability densities. In this case G(R, R') has been expressed 
as a sum of probability densities and can be sampled by first selecting a 
term with probability given proportional to its normalization and then 
sampling/~ from that term. 

It is instructive to look at an approximation to (18), good in the limit 
of large Ec, which is equivalent to the short-time approximation. If the 
domain is taken to be V(/~') and Ec is taken very large, only small r in (9) 
will contribute. Therefore Gu(R, R') becomes sharply peaked about /~  = _,q' 
and V(/~)~ V(/~'). The third term in (18) can be made arbitrarily small by 
increasing Ec. By dropping this term, a large Ec approximation is 
obtained. At this point (8) can be iterated and the resulting integrals done 
with Metropolis Monte Carlo, recovering a path-integral formulation. 
Instead we sum the series indicated by (18) while doing the integrals with 
standard Monte Carlo methods. The selection of the sphere radii about 
each electron for the domain will affect the efficiency but not the final 
answer. 

Importance sampling methods greatly decrease the variance of the 
final answer. We give here a simple argument for taking the importance 
function equal to the trial function. Equation 8 becomes, in R space 

@n(.~) = (ET+ Ec) f dR' G(/~,/~') ~" '(/~') (19) 

After convergence to the ground state, we want a low-variance method to 
calculate the eigenvalue. It is simplest to look at the growth energy for this 
analysis since the variance of the mixed energy will be zero if the exact 
ground-state wave function is used for ~ r .  A low variance for the growth 
energy means that a walker at /~' should produce one walker at some 
position /~; that is, there should be no branching. After convergence, the 
iterated wave function becomes equal to the ground state wave function 

~ n - ,  (/~,) = t)o(/~, ) (20) 
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The correct importance function is obtained from the solution of the 
adjoint equation run backward from the target to the current point. 
Equation 19 defines a self-adjoint problem so that the importance function 
should be 00. To see this, the Green's function is run backward. The only 
part of the Green's function that contributes in this limit is 
Oo(R) Oo(-R')/(Eo+ Ec). The interesting part of the integral in (19) is 

_ ET+ Ec [" d~'[~'o(~) 4'o(~')] ~o(~') (21) 

If/~' is sampled from O0(/~')/S d/~" ~" ~bo(R ), the value of the remainder of 
the integral depends on R' and will not produce one walker in the next 
iteration. However, if/~' is sampled from ~bo(R ), all the dependence of 
(21) is sampled and a low-variance result can be obtained. Since ~'o is not 
known, the trial function is taken as the importance function. The 
interesting part of (19) can then be rewritten as 

O~(R)~r(R)= Er+Ec f d/~' [ ~r(/~) ~bo(R)~ ~b~ ] ~r(/~') ~b'- 1(~,) 
Eo + E~ ~ 

(22) 

and if ~ur(/~ ) = ~o(/~) and E r =  E0, a zero-variance method results since 
each walker produces exactly one walker in the next iteration. The 
inclusion of importance sampling is made by substituting 

in (18) and (19). The inclusion of importance sampling also makes the 
calculation of the mixed energy simpler and less biased. 

An algorithm for the actual sampling of the importance sampled 
Green's function equation 

(ET+ Ec) 7tr(/~')~ G(/~',/~) = ( E r +  Ec) g~T(/~')_ Gu(R', R) 
~'~( R ) ~'~( R ) 

~[JT( R '  ) ~JT( R 't ) 
+ J('s d/~(Er + Ec) G(R', R") ~u~(~,,) ~ (~ )  1--~ VG d~q", ~)] 

+IvdR " G(R', R")[U- V(/~")] a "/~" /~' (23) 

will now be given. It is simplest to first explain how (23) would be sampled 
in the large Ec or short-time approximation and then generalize to the full 
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sampling of (23). Since (23) is a recursive equation, it is convenient to 
place the Monte Carlo walkers on a push-down, pop-up stack. Each entry 
in the stack is a walker consisting of the 3N coordinates of the N electrons. 
In practice it is useful to cary along various other quantities such as the 
value of the current potential energy and various derivatives of the trial 
wave function as well to make the calculation efficient. Here we will assume 
that these quantities are calculated as needed to make the exposition more 
clear. It should be noted that data structures other than a stack may be 
more useful for different machine architectures. In particular, on parallel 
machines a circular queue structure leads to a more efficient program. 

Initially, a full stack of walkers is generated by sampling from ~u2(/~) 
in a variational calculation or from sampling gtr(/~ ) 0 n - ~(/~) from the last 
iteration. I will call this the old stack. Walkers will be propagated to a new 
stack. Initially, it is empty. 

In the large Ec limit only the first term of (23) survives, as explained 
earlier. In this case, sampling (23) is accomplished by the following steps 

1. Pop a walker off the old stack. Its position defines the coordinates/? in 
(23). Select U (normally select U =  V(/~)). 

2. Sample a time step. This is accomplished by recalling that 

7tr(/~') G( /~ ' , /~) -  TT(/~') 1 

. 

4. 

_ 

~(K)  Jo 
dm<.~'l exp(- (H+ Ec)r)IN> 

_ Tr(/~') ~ dr Gv(/~',/~, ~) (24) 
~'T(K) Jo 

Here {gtr(/~')/[gtr(/~)]} Gu(/~',/~, ~) will be approximately a 
Gaussian with a drift term. By approximately integrating 
{gtr(_R')/[~r(R)]}Gu(_R',R,r ) over /~', a probability density for 
selecting a time ~ results; r is then sampled from this density. 

Now that r is known, /~' is sampled from an approximation to 
{(ET+ E~)[ ~uT(~')/[ ~T(~)] } ou(K', K, r). 
Calculate a weight. This is given by the ratio 

[(E~+ z~){ ~T(g")/~TOq)} 6u(~', .,q, "C)] W -  (25) 
P(~', ~) 

where P(/~', r) is the probability density from which /~' and r are 
sampled. 
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5. Calculate N = i n t ( W + ~ )  where r is a random number uniformly dis- 
tributed on the unit interval 0 < r < 1, push N copies of the/~ '  walker 
position onto the new stack, and go back to Step 1. 

This process is repeated until the old stack is empty. The 
approximations mentioned in Steps 2 and 3 typically consist of replacing 
gtT(/~' ) by a Taylor series approximation around R. 

Generalizing to the full expression in (23) is straightforward. It is con- 
venient to label the terms on the right-hand side of (23) in order as term 1, 
term 2, and term 3. 

1. Pop a walker off the old stack and select a value of U and the radii of 
the spheres around each particle for the domain. This is done so that 
U-- V(/~")> 0 for all/~" in the domain. 

2. Sample a time r and whether a surface (term 2) or a volume (term 1 or 
term 3) step is taken. The probability of selecting a surface or volume 
step is determined by the relative norms of the three terms on the right- 
hand side of (23). The approximate calculation of these norms is 
facilitated by noting that 

(E~+ F~) f dR" ~ ( R " )  ~ - ~(R'i G(R", R ' )  ~ 1 (26) 

with equality if perfect importance sampling is used. This equation also 
indicates that a low variance results from the mutually exclusive sampl- 
ing of the three terms on the right-hand side of (23). 

3. If a surface step is selected, sample /~" from an approximation to 
[ ~ ' ~ ( R " ) / ~ - ( K ' ) ]  [ - "  ~" " '  n ' V G u ( R  , R , z ) ]  and push the appropriate 
number (as in Step 5, of the previous example) of copies of R" onto the 
old stack and go to Step 1. It is helpful in understanding this step to 
view the old stack as a set of walkers that need to be propagated by 
(ETq-Ec)[Ttr(R')/~Pr(R)] G(R', _R) from their current position/~ to a 
new position /?'. Once walkers propagating via term 2 of (23) are 
propagated by [gtr(R")/gtr(ff~)][-t~'VGu(ff~",ff~)] from /~ to /~", 
they need to be propagated in an identical way as the initial walkers on 
the old stack and may be added to them. 

4. If a volume step is selected, sample /~" from an approximation to 
[7tr(/~')/~r(/~)] G(/~',/~, r). It is instructive to note that both term 1 
and term 3 have a similar structure. A walker at a position R is sam- 
pled at a new position labeled by either/~" or _R'. Clearly, this is just a 
relabeling of the same function [Tr(R')/~Pr(R)] ~' G( R , R, ~ ) and the 
sampling of a new position is the same. Again the approximate 
inequality of (26) is used to put term 1 and term 3 on the same footing. 
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5. Decide whether term 1 or term 3 is chosen. For example, take term 1 
with probability(Er + Ec)/[ET + Ec + U -  V(R")], or else take term 3. 

6. In term 1 is chosen, push the appropriate number of copies of the new 
walker position on the new stack and go to Step 1. 

7. If term 3 is chosen, puch the appropriate number of copies of the new 
walker position on the old stack and go to Step 1. 

The iteration terminates when the old stack is empty. The new stack 
contains walkers sampled from ~T(/~) ~n(/~) where n is the next iteration. 

A similar algorithm can easily be developed for the method in 
imaginary time corresponding to (7). A record of the amount of time a 
walker has propagated must be kept. No other difference exists. 

It should be clear that just as the short-time approximation can be 
easily written to be a path integral calculated using the Metropolis method, 
the full iteration of (18) can also be written in terms of a more general path 
integral calculated again with the Monte Carlo method. In this case, the 
standard canonical ensemble Metropolis method would be replaced by a 
grand canonical ensemble method where intermediate time points are inser- 
ted and removed during the Metropolis walk corresponding to the various 
terms in (18). The time-step error inherent in current path-integral methods 
could be eliminated. 

4. T H E  F I X E D - N O D E  A P P R O X I M A T I O N  

The electronic structure of atoms and molecules is solved here within 
the fixed-node approximation. (9'1~ The rule is that the walkers may never 
cross a node of the trial wave function. This is equivalent to enforcing the 
boundary condition that r ~ 0 whenever ~ T <  0. This approximation is 
implemented by selecting the domain of Gu such that the wave function is 
positive for all points within the domain. In practice, a linear 
approximation to ~(/~) is used to predict the distance to a node, and the 
domain is chosen to only let electrons move a fraction of the distance to 
the predicted node. Typically this fraction is �89 or somewhat smaller. If any 
walkers cross the node this fraction is reduced. It would be possible to find 
the minimum value of ~r(/~) within the domain, but this would require 
several evaluations of ~r()~) and its derivatives. The present method seems 
more efficient. The fixed-node energy is an upper bound to the true 
ground-state energy. (8,1~ 

The fixed-node method is equivalent to solving for the ground state of 
the Hamiltonian HvN defined as 

HFN = H +  E~ E g'T(R)] (27) 
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where 

E ~ ( x ) = 0  if x > 0  

=oo if x < 0  (28) 

and antisymmetrizing the resulting wave function OVN- Since a repulsive 
potential is being added to the Hamiltonian, the energy goes up. A more 
rigorous argument is given by noting the equalities 

(~FNIHFNII//FN) (~FNIHI~tFN) (~FN[AHAI~FN) 
= - (29) 

(~ /FN I [~FN)  ( ~ F N  I I~/FN ) (~/FN[ A A  II~FN) 

where A is an antisymmetrizing operator. The last term in (29) clearly is an 
upper bound to Eo by the variational principle. 

5. R E S U L T S  A N D  D I S C U S S I O N  

In Table I we give results of fixed-node G F M C  calculations of LiH at 
its equilibrium internuclear separation using two different trial functions for 
the nodes. The GFMC-SCF result is with a self-consistent field trial 
function. The GFMC-GVB result is with a generalized valence bond trial 
function. In this case both of the trial-wave functions give 100% of the 
correlation energy within statistical uncertainties. 

Table II contains results using the self-consistent field-trial function 
and compares G F M C  results with a Morse potential fit to experiment. In 
Tables III and IV are results of calculations on the Be atom. In this case 
the near degeneracy of the 2s and 2p states deforms the nodal surface away 
from that obtained using single Slater 2s orbitals which give only 71% 
of the correlation energy. Slightly more complicated wave functions 

Table I. The Electronic Energy and Correlation Energy of LiH at the  
Equ i l ib r ium Internuclear Distance (3.015 Bohr)  

Compu ted  by the  GFMC M e t h o d  ~ 

I~ trial E O" Ecorr ~176 corr 

GFMC-SCF - 8.071 0.002 0.084 101 
GFMC-.GVB - 8.068 0.002 0.081 98 
Expt. - 8.0705 - -  0.083 100 

Energy in hartree. 
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Table II. The Elect ron ic  Energy of  LiH as a Funct ion of  In ternuc lear  Distance 
Compu ted  by the  GFMC M e t h o d  Employ ing 

a Single De te rm inan t  Se l f -Cons is tent  Field-Tr ia l  Funct ion.  
A Morse  Potent ia l  Fit to  the  Exper imenta l  Data is Also shown  

R EDG F 0- EExpt 

3.015 - 8.071 0.002 - 8.0699 

3.6 - 8.062 0.001 - 8.0624 

4.8 - 8.032 0.003 - 8.0320 

Tab le l l l .  The Elect ronic  Energy and Cor re la t ion  Energy of  
Be Computed  by the  GFMC M e t h o d  a 

~/trial E o- Ecorr % corr 

G F M C  (single ~) - 14.640 0.006 0.067 7l 

G F M C - M C S C F  - 14.667 0.002 0.094 100 

Exp - 14.6674 - -  0.0944 100 

" Energies in hartree.  

Table IV. The Exc i ta t ion  Energy of  the Be A t o m  Computed  by 
the  GFMC M e t h o d  a 

Trans i t ion  EDG F 0" EExpt 

1S ~ 3p 2.90 0.08 2.73 

1S --* tP  5.42 0.08 5.28 

3p ~ ap 2.52 0.08 2.55 

a The  s t anda rd  devia t ion (6) refers to the largest  value for ei ther state of the transit ion. 

Energies in eV. 
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Table V. (a) The Experimental Electronic and 
Correlation Energy of the C Atom. 

(b) The Electronic and Correlation Energy of 
the C Atom by the GFMC Method. ~ 

State E 

(a) Experimental  results 

Ecorr 

3p -37.8420 0.1534 

ID --37.7955 0.1642 
3P--*ID 1.27 eV 

(b) G F M C  

State ~ ma~ E cr E~o~ % .... 

3p MCSCF - 37.828 0.005 0.140 91 

3p Double ~ - 37.842 0.005 0.153 100 

ID Double ~ - 37.799 0.007 0.167 102 
3p ~ t D __ 1.17 eV 0.24 

a Energies in hartree except where noted. 

containing p state contributions again give 100% of the correlation energy. 
Table IV shows the results obtainable for excitation energies of Be. The 
excited states are orthogonal to the ground state by symmetry and can be 
easily calculated with the fixed-node approximations. 

Tables V and VI give results for the more complicated systems of C 
and H20. Again 90 to 100 % of the correlation energies and good results 
for excitation energies are possible. However, for these higher Z systems, 
the higher total energies lead to larger variances. In the case of H20  the 
error bar us 0.015, which is quite large by chemical standards. While more 

Table VI. The Electronic Energy and Correlation Energy of Water  
(RoH=1.81 Bohr, 9=104 .45 )  Computed by the GFMC Method a 

Ij.t triaI E (7 Ecorr ~176 corr 

GFMC-I  - 76.238 0,040 0.170 46 
GFMC-I I  - 76.402 0.015 0.335 91 

Expt. - 76.4376 - -  0.370 100 

I and II refer to minimal Slater and double ~ for oxygen 2p functions, Energies in hartree, 
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computing time would lower these errors, it would not be by a large factor. 
With present techniques the G F M C  method is limited to doing atoms and 
molecules with about 10 or fewer electrons. 

6. CONCLUSION 

We have outlined the G F M C  method for atoms and molecules within 
the fixed-node approximation. The method used has no time-step error and 
therefore does not require an expensive extrapolation to zero time step. 
Also there is no systematic error introduced by using an approximation 
that is not valid even in the limit of zero time step. For  example, the short- 
time Green's function given by 

GsT(/~',/~, A t ) =  (2re Az)-  3U/2exp ~ -- 
( 

J R ' -  R - V l n  7iT(R) A~]2 

2Az 

(30) 

which is commonly used is not correct in this limit as a simple substitution 
into the equation 

[H+ (alao] GsT(R ,  R, A~)=  0 (31) 

and keeping terms of the same order as the potential, will demonstrate. 
The G F M C  method has difficulty for more than about 10 electrons. 

Energy differencing schemes seem to be required and are being actively 
sought. The fermion problem is not at present the main bottleneck to the 
solution of atoms and molecules. The fixed-node solutions are adequate if 
improved statistical accuracies can be obtained. 
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